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Abstract

This paper deals with the theoretical investigation of the effect of dust particles on the thermosolutal convection in ferrofluid sub
a transverse uniform magnetic field. Using linearized stability theory and normal mode analysis, an exact solution is obtained for t
two free boundaries. For the case of stationary convection, non-buoyancy magnetization and dust particles have a destabilizing effe
stable solute gradient has a stabilizing effect on the onset of instability. The critical wave number and critical magnetic thermal
number for the onset of instability are also determined numerically for sufficiently large values of buoyancy magnetic parameteM1 and
results are depicted graphically. It is observed that the critical magnetic thermal Rayleigh number is reduced because the heat
clean fluid is supplemented by that of the dust particles. The principle of exchange of stabilities is found to hold good for the ferroflu
from below in the absence of dust particles and stable solute gradient. The oscillatory modes are introduced due to the presence
particles and stable solute gradient, which were non-existent in their absence. The sufficient conditions for the non-existence of ov
are also obtained. The paper also reaffirms the qualitative findings of earlier investigations which are, in fact, limiting cases of th
study.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Ferrofluids are obtained by suspending submicron s
particles of magnetite in a carrier such as kerosene, hep
or water. These fluids not found in nature, behave as a
mogeneous medium and exhibit interesting phenomen
the last millennium, the investigation on ferrofluids attrac
researchers because of the increase of applications i
eas such as instrumentation, lubrication, vacuum techno
vibration damping, metals recovery, acoustics; its comm
cial usage includes vacuum feed-throughs for semicondu
manufacturing and related uses, pressure seals for com
sors and blowers, engineering, medicine, chemical rea
and high-speed silent printers, etc. During the last half c
tury, research on magnetic liquids has been very produc
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in many fields. Major perspectives are connected with a m
sive shocks and oscillation damping (earthquake, airba
but the contemporary application concerned mostly s
and cooling of loudspeakers. Strong efforts have been un
taken to synthesize stable suspensions of magnetic par
with different performances in magnetism, fluid mechan
or physical chemistry.

Experimental and theoretical physicists and engine
gave significant contributions to ferrohydrodynamics and
applications [1–7]. In recent years, increasing attention
been focused on the study of ferrofluids. In many lubri
tion situations it is required to place the lubricant at a
sired position and then retain it there. Therefore, ferroflu
have been successfully employed as lubricants in various
drodynamically lubricated bearing. This motivated seve
research workers to analyze ferrofluid lubrication for diff
ent bearing situation under various simplifying assumptio
Chandra et al. [8], Kumar et al. [9,10] and Sinha et al. [
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Nomenclature

Latin symbols

a particle radius . . . . . . . . . . . . . . . . . . . . . . . . . . . m
b subscript; basic state
B magnetic induction . . . . . . . . . . . . . . . . . . . . . . . T
B magnitude ofB . . . . . . . . . . . . . . . . . . . . . . . . . . T
C solute concentration . . . . . . . . . . . . . . . . . . . . . kg
C0 constant average concentration at the bottom

surfacez = −d/2 . . . . . . . . . . . . . . . . . . . . . . . kg
C1 constant average concentration at the upper

surfacez = +d/2 . . . . . . . . . . . . . . . . . . . . . . . kg
Ca average concentration . . . . . . . . . . . . . . . . . . . . kg

Ca = (C0 + C1)/2
CV,H specific heat at constant volume and magnetic

field . . . . . . . . . . . . . . . . . . . . . . . . . . kJ·m−3·K−1

Cpt specific heat of dust particles . . . . kJ·m−3·K−1

d thickness of the ferrofluid layer . . . . . . . . . . . m
D/Dt = (∂/∂t + q · ∇) the convective derivative . s−1

(∂/∂t + qd · ∇) the convective derivative analogous to
dust particles . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

g acceleration due to gravity
g = (0,0,−g) . . . . . . . . . . . . . . . . . . . . . . . m·s−2

H magnetic field intensity . . . . . . . . . . . Amp·m−1

Hext external magnetic field intensity . . . Amp·m−1

H′ the perturbation in magnetic field
intensity . . . . . . . . . . . . . . . . . . . . . . . . . Amp·m−1

H magnitude ofH . . . . . . . . . . . . . . . . . . Amp·m−1

H0 uniform magnetic field intensity . . . Amp·m−1

K = 6πµa Stokes drag coefficient . . . . . . . . . . . kg·s−1

k̂ unit vector in thez-direction
kx the wave number along thex-direction m−1

ky the wave number along they-direction m−1

k the resultant wave number
k =

√
k2
x + k2

y . . . . . . . . . . . . . . . . . . . . . . . . . m−1

K1 thermal conductivity . . . . . . . . . . . W·m−1·K−1

K ′
1 solute conductivity . . . . . . . . . . . . . W·m−1kg−1

K2 = −(∂M/∂T )H0,Ta the pyromagnetic
coefficient . . . . . . . . . . . . . . . . . . Amp·m−1·K−1

K3 = (∂M/∂C)H0,Ca the salinity magnetic
coefficient . . . . . . . . . . . . . . . . . . Amp·m−1·kg−1

m mass of the dust particle . . . . . . . . . . . . . . . . . kg
M magnetization . . . . . . . . . . . . . . . . . . . . Amp·m−1

M′ the perturbation in the
magnetization . . . . . . . . . . . . . . . . . . . . Amp·m−1

M magnitude ofM . . . . . . . . . . . . . . . . . . Amp·m−1

M0 the magnetization when magnetic field isH0,
temperatureTa and
concentrationCa . . . . . . . . . . . . . . . . . Amp·m−1

N number density of the dust particles . . . 1·m−3

N0 = const. uniform particle distribution . . 1·m−3

p the fluid pressure . . . . . . . . . . . . . . . . . . . . N·m−2

p′ the perturbation in fluid pressure . . . . . . N·m−2

q velocity of the ferrofluid . . . . . . . . . . . . . . m·s−1

q′ = (u, v,w) the perturbation in velocity on basic
quiescent state(0,0,0) . . . . . . . . . . . . . . . m·s−1

qd velocity of the dust particles . . . . . . . . . . m·s−1

q′
1 = (�, r, s) the perturbation in velocity

(0,0,0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m·s−1

t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T0 constant average temperature at the bottom

surfacez = −d/2 . . . . . . . . . . . . . . . . . . . . . . . . K
T1 constant average temperature at the upper

surfacez = +d/2 . . . . . . . . . . . . . . . . . . . . . . . . K
Ta average temperature . . . . . . . . . . . . . . . . . . . . . . K

Ta = (T0 + T1)/2

Greek letters

α coefficient of thermal expansion . . . . . . . . . K−1

α′ an analogous solvent coefficient of
expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K−1

β a uniform temperature gradient
β = |dT/dz| . . . . . . . . . . . . . . . . . . . . . . . . K·m−1

β ′ a uniform concentration gradient
β ′ = |dC/dz| . . . . . . . . . . . . . . . . . . . . . . . kg·m−1

ν kinematic viscosity . . . . . . . . . . . . . . . . . . m2·s−1

µ dynamic viscosity (constant) . . . . . kg·m−1·s−2

µ0 magnetic permeability of free space H·m−1

ρ fluid density . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

ρ0 mean density of the clean fluid . . . . . . . kg·m−3

χ = (∂M/∂H)H0,Ta the magnetic susceptibility
θ the perturbation in temperatureT . . . . . . . . . . K
γ the perturbation in concentrationC . . . . . . . kg
ρ′ the perturbation in densityρ . . . . . . . . . kg·m−3

∇ del operator . . . . . . . . . . . . . . . . . . . . . . . . . . . m−1

σ the growth rate . . . . . . . . . . . . . . . . . . . . . . . . . s−1

Φ ′ the perturbed magnetic potential . . . . . . . . Amp
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presented mathematical analyses of ferrolubrication for
ious configurations using Shliomis model.

An authoritative introduction to the research on magn
liquid has been discussed in detail in the celebrated m
graph by Rosensweig [12]. This monograph reviews sev
applications of heat transfer through ferrofluids. Such p
nomenon is enhanced convective cooling having a tem
ature dependent magnetic moment due to magnetizatio
 f

the fluid. This magnetization, in general, is function of
magnetic field, temperature and density of the fluid. A
variation of these quantities can induce a change in b
force distribution in the fluid. This leads to convection
ferrofluids in the presence of magnetic field gradient. T
mechanism is known as ferroconvection, which is sim
to Bénard convection (Chandrasekhar [13]). The convec
instability of a ferrofluid for a fluid layer heated from b
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low in the presence of uniform vertical magnetic field h
been considered by Finlayson [14]. He explained the con
of thermo-mechanical interaction on ferrofluids. Therm
convective stability of ferrofluids without considering buo
ancy effects has been investigated by Lalas and Carmi
whereas Shliomis [16] analyzed the linearized relation
magnetized perturbed quantities at the limit of instabil
Kumar and Chandra [17] considered the flow of a magn
fluid through a channel in the presence of a transver
applied magnetic field and studied the flow behavior for v
ous parameters. The stability of a static magnetic fluid un
the action of an external pressure drop has been studie
Polevikov [18], whereas the thermal convection in a m
netic fluid has been considered by Zebib [19]. The ther
convection in a layer of magnetic fluid confined in a tw
dimensional cylindrical geometry has been studied by La
[20]. Schwab et al. [21] investigated experimentally the F
layson’s problem in the case of a strong magnetic field
detected the onset of convection by plotting the Nusselt n
ber versus the Rayleigh number. Then, the critical Rayle
number corresponds to a discontinuity in the slope. La
Stiles and Kagan [22] examined the experimental prob
reported by Schwab et al. [21] and generalized the F
layson’s model assuming that under a strong magnetic fi
the rotational viscosity augments the shear viscosity.

The Bénard convection in ferrofluids has been conside
by many authors [23–40]. The ferrofluid has been conside
to be clean in all the above studies. In many situations,
fluid is often not pure but contains dust particles or im
rities. Saffman [41] has considered the stability of lami
flow of a dusty gas. Scanlon and Segel [42] have consid
the effects of suspended particles on the onset of Bénard
vection, whereas Sharma et al. [43] have studied the e
of suspended particles on the onset of Bénard convectio
hydromagnetics and found that the critical Rayleigh num
is reduced because the heat capacity of clean fluid is
plemented by that of the dust particles. The separate ef
of suspended particles, rotation and solute gradient on
mal instability of fluids through a porous medium have be
discussed by Sharma and Sharma [44]. The suspended
ticles were thus found to destabilize the layer. Palaniswa
and Purushotham [45] have studied the stability of shear
of stratified fluids with fine dust and found the effects
fine dust to increase the region of instability. On the ot
hand, the multiphase fluid systems are concerned with
motion of a liquid or gas containing immiscible inert ide
tical particles. Of all multiphase fluid systems observed
nature, blood flow in arteries, flow in rocket tubes, dus
gas cooling systems to enhance the heat transfer proce
movement of inert solid particles in atmosphere, sand
other particles in sea or ocean beaches are the most com
examples of multiphase fluid systems. Naturally, studie
these systems are mathematically interesting and physi
useful for various good reasons. The effect of dust pa
cles on non-magnetic fluids has been investigated by m
authors [46–49]. The main result from all these studie
-

r-

s,

n

that dust particles have destabilizing effect on the sys
and specific heat of fluid is greater than the specific hea
particles is the sufficient condition for the non-existence
overstability.

In view of the above investigations and keeping in m
the importance of ferrofluids, it is attempted to discuss
effect of dust particles on thermosolutal convection in a
rofluid subjected to a vertical magnetic field. In this analy
neutral impurities alone are considered. The present s
can serve as a theoretical support for an experimental in
tigation e.g. evaluating the influence of impurities in a f
rofluid on thermohaline convection phenomena. This pr
lem, to the best of our knowledge, has not been investig
yet.

2. Mathematical formulation of the problem

We consider an infinite, horizontal layer of thicknessd of
an electrically non-conducting incompressible Boussin
ferrofluid embedded in dust particles heated and sol
from below. A uniform magnetic fieldH0 acts along the ver
tical direction which is taken asz-axis. The temperatureT
and solute concentrationC at the bottom and top surface
z = ∓1

2d are T0, T1 and C0,C1, respectively (see Fig. 1
Both boundaries are taken to be free and perfect condu
of heat. The gravity fieldg = (0,0,−g) and uniform vertical
magnetic field intensityH = (0,0,H0) pervade the system

The mathematical equations governing the motion of
rofluid for the above model are as follows:

The continuity equation for an incompressible ferroflu
is

∇ · q = 0 (1)

The momentum equation is

ρ0

[
∂

∂t
+ (q · ∇)

]
q

= −∇p + ρg + KN(qd − q) + ∇ · (HB) + µ∇2q (2)

Assuming a uniform particle size, a spherical shape,
small relative velocities between the fluid and dust partic
the presence of dust particles adds an extra force term i

Fig. 1. Geometrical configuration.
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equations of motion (2), proportional to the velocity diffe
ence between the dust particles and the fluid. Two additi
simplifications are assumed in Eq. (2): we assume tha
viscosity is isotropic and independent of the magnetic fi
Both approximations simplify the analysis without chang
the ultimate conclusion.

The density equation of state is taken as:

ρ = ρ0
[
1− α(T − Ta) + α′(C − Ca)

]
(3)

Since the force exerted by the fluid on the particles
equal and opposite to that exerted by the particles on
fluid, there must be an extra force term, equal in mag
tude but opposite in sign, in the equations of motion for
particles. Electrical forces are not considered. The buoya
force on the particles is also neglected. This force is pro
tional to the quotient ofρ and the particle density, and a
analysis for the case of free-free boundary conditions sh
that its small stabilizing effect is neglected. Inter-particle
actions are also ignored since we assume that the dista
between particles are quite large compared with their di
eters. The effects due to pressure, gravity, on the part
are negligibly small, and therefore ignored. Under these
strictions, the equations of motion and continuity of the d
particles are

mN

[
∂

∂t
+ (qd · ∇)

]
qd = KN(q − qd) (4)

∂N

∂t
+ ∇ · (Nqd) = 0 (5)

wheremN is the mass of particles per unit volume.
The equations expressing the conservation of tempera

and solute concentration in presence of dust particles ar
[
ρ0CV,H − µ0H ·

(
∂M
∂T

)
V,H

]
DT

Dt

+ µ0T

(
∂M
∂T

)
V,H

· DH
Dt

+ mNCpt

(
∂

∂t
+ qd · ∇

)
T = K1∇2T (6)

[
ρ0CV,H − µ0H ·

(
∂M
∂C

)
V,H

]
DC

Dt

+ µ0T

(
∂M
∂C

)
V,H

· DH
Dt

+ mNCpt

(
∂

∂t
+ qd · ∇

)
C = K ′

1∇2C (7)

The partial derivatives ofM are material properties whic
can be evaluated once the magnetic equation of state,
as Eq. (11) below, is known.

Maxwell’s equations, simplified for a non-conducti
fluid with no displacement currents, become

∇ · B = 0, ∇ × H = 0 (8a,b)
s

h

In the Chu formulation of electrodynamics (Penfield a
Haus [50]), the magnetic field, magnetization and the m
netic induction are related by

B = µ0(H + M) (9)

We assume that the magnetization is aligned with
magnetic field, but allow a dependence on the magnitud
the magnetic field, temperature and salinity, so that

M = H
H

M(H,T ,C) (10)

The magnetic equation of state is linearized about
magnetic field,H0, an average temperature,Ta, and the av-
erage salinity,Ca to become

M = M0 + χ(H − H0) − K2(T − Ta) + K3(C − Ca) (11)

whereH0 is the uniform magnetic field of the fluid laye
when placed in an external magnetic fieldH = H ext

0 k̂ and
M0 = M(H0, Ta,Ca).

The basic state is assumed to be quiescent state a
given by

q = qb = 0, qd = (qd)b = 0, ρ = ρb(z), p = pb(z)

T = Tb(z) = −βz + Ta

C = Cb(z) = −β ′z + Ca, β = T1 − T0

d
, β ′ = C1 − C0

d

Hb =
[
H0 + K2(Tb − Ta)

1+ χ
− K3(Cb − Ca)

1+ χ

]
k̂

Mb =
[
M0 − K2(Tb − Ta)

1+ χ
+ K3(Cb − Ca)

1+ χ

]
k̂

H0 + M0 = H ext
0 , N = Nb = N0 (12)

Only the spatially varying parts ofH0 andM0 contribute
to the analysis, so that the direction of the external magn
field is unimportant and the convection is the same whe
the external magnetic field is parallel or antiparallel to
gravitational force.

3. The perturbation equations and normal mode
analysis method

We shall analyze the stability of the basic state by in
ducing the following perturbations:

q = qb + q′, qd = (qd)b + q′
1

p = pb(z) + p′, ρ = ρb + ρ′

T = Tb(z) + θ, C = Cb(z) + γ

H = Hb(z) + H′ and M = Mb(z) + M′ (13)

These perturbations are assumed to be small and the
linearized perturbation equations become

L1ρ0
∂u

∂t
= L1

[
−∂p′

∂x
+ µ0(M0 + H0)

∂H ′
1

∂z
+ µ∇2u

]

− mN0
∂u

(14)

∂t
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L1ρ0
∂v

∂t
= L1

[
−∂p′

∂y
+ µ0(M0 + H0)

∂H ′
2

∂z
+ µ∇2v

]

− mN0
∂v

∂t
(15)

L1ρ0
∂w

∂t
= L1

[
−∂p′

∂z
+ µ0(M0 + H0)

∂H ′
3

∂z
+ µ∇2w

− µ0K2β

1+ χ

{
H ′

3(1+ χ) − K2θ
}

+ µ0K3β
′

1+ χ

{
H ′

3(1+ χ) + K3γ
}

− µ0K2K3

1+ χ
(β ′θ + βγ ) + gρ0(αθ − α′γ )

]

− mN0
∂w

∂t
(16)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (17)

L1

[
{ρC1 + mN0Cpt}∂θ

∂t
− µ0T0K2

∂

∂t

(
∂Φ ′

1

∂z

)]

= L1

[
K1∇2θ +

{
ρC1β − µ0T0K

2
2β

(1+ χ)

}
w

]

+ mN0βCptw (18)

L1

[
{ρC′

1 + mN0Cpt}∂γ

∂t
− µ0C0K3

∂

∂t

(
∂Φ ′

2

∂z

)]

= L1

[
K ′

1∇2γ +
{
ρC′

1β
′ − µ0C0K

2
3β ′

(1+ χ)

}
w

]

+ mN0β
′Cptw (19)

where

ρC1 = ρ0CV,H + µ0K2H0, ρC′
1 = ρ0CV,H − µ0K3H0,

L1 =
(

m

K

∂

∂t
+ 1

)
(20)

Eqs. (10) and (11) yield

H ′
3 + M ′

3 = (1+ χ)H ′
3 − K2θ

H ′
3 + M ′

3 = (1+ χ)H ′
3 + K3γ

H ′
i + M ′

i =
(

1+ M0

H0

)
H ′

i (i = 1,2)




(21)

where we have assumedK2βd � (1 + χ)H0, K3β
′d �

(1 + χ)H0. Thus the analysis is restricted to physical sit
tion in which the magnetization induced by temperature
concentration variations is small compared to that indu
by the external magnetic field. Eq. (8b) means we can w
H′ = ∇(Φ ′

1 − Φ ′
2), whereΦ ′

1 is the perturbed magnetic po
tential andΦ ′

2 is the perturbed magnetic potential analogo
to solute.

Eliminating u,v,p′ between Eqs. (14)–(16), usin
Eq. (17), we obtain
{
L1

(
ρ0

∂

∂t
− µ∇2

)
+ mN0

∂

∂t

}
∇2w

= L1

[
−µ0K2β

1+ χ
∇2

1

{
(1+ χ)

∂

∂z
(Φ ′

1 − Φ ′
2) − K2θ

}

+ µ0K3β
′

1+ χ
∇2

1

{
(1+ χ)

∂

∂z
(Φ ′

1 − Φ ′
2) + K3γ

}

+ ρ0g∇2
1(αθ − α′γ ) − µ0K2K3

(1+ χ)
∇2

1(β ′θ + βγ )

]
(22)

From Eqs. (21), we have

(1+ χ)
∂2Φ ′

1

∂z2
+

(
1+ M0

H0

)
∇2

1Φ ′
1 − K2

∂θ

∂z
= 0 (23)

(1+ χ)
∂2Φ ′

2

∂z2
+

(
1+ M0

H0

)
∇2

1Φ ′
2 − K3

∂γ

∂z
= 0 (24)

Normal mode solution of all dynamical variables can
written as

(w, θ, γ,Φ ′
1,Φ

′
2)

= [
W(z, t),Θ(z, t),Γ (z, t),Φ1(z, t),Φ2(z, t)

]
× exp i(kxx + kyy) (25)

Following normal mode analysis, the linearized pertur
tion dimensionless equations for thermosolutal convectio
ferrofluid in the presence of dust particles become[
L∗

1

(
∂

∂t∗
− (

D2 − a2)) + f
∂

∂t∗

](
D2 − a2)W ∗

= aR1/2L∗
1

[
(M1 − M4)DΦ∗

1 − (1+ M1 − M4)T
∗]

+ aS1/2L∗
1

[
(M ′

1 − M ′
4)DΦ∗

2 + (1− M ′
1 + M ′

4)C
∗]
(26)

L∗
1Pr

[
(1+ h)

∂T ∗

∂t∗
− M2

∂

∂t∗
(DΦ∗

1)

]

= L∗
1

(
D2 − a2)T ∗ + aR1/2[L∗

1(1− M2) + h
]
W ∗ (27)

L∗
1Ps

[
(1+ h′)∂C∗

∂t∗
− M ′

2
∂

∂t∗
(DΦ∗

2)

]

= L∗
1

(
D2 − a2)C∗ + aS1/2[L∗

1(1− M ′
2) + h′]W ∗ (28)

D2Φ∗
1 − a2M3Φ

∗
1 − DT ∗ = 0 (29)

D2Φ∗
2 − a2M3Φ

∗
2 − DC∗ = 0 (30)

where the following non-dimensional parameters are in
duced:

t∗ = νt

d2
, W ∗ = Wd

ν

Φ∗
1 = (1+ χ)K1aR1/2

K2ρC1βνd2
Φ1, Φ∗

2 = (1+ χ)K ′
1aS1/2

K3ρC′
1β

′νd2
Φ2

R = gαβd4ρC1

νK1
, S = gα′β ′d4ρC′

1

νK ′
1

T ∗ = K1aR1/2

ρC βνd
Θ, C∗ = K ′

1aS1/2

ρC′ β ′νd
Γ, a = kd
1 1
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z∗ = z

d
, D = ∂

∂z∗

Pr = ν

K1
ρC1, Ps = ν

K ′
1
ρC′

1

M1 = µ0K
2
2β

(1+ χ)αρ0g
, M ′

1 = µ0K
2
3β ′

(1+ χ)α′ρ0g

M2 = µ0T0K
2
2

(1+ χ)ρC1
, M ′

2 = µ0C0K
2
3

(1+ χ)ρC′
1

M3 = 1+ M0/H0

1+ χ
, M4 = µ0K2K3β

′

(1+ χ)αρ0g

M ′
4 = µ0K2K3β

(1+ χ)α′ρ0g
, M5 = M4

M1
= M ′

1

M ′
4

= K3β
′

K2β

τ = mν

Kd2
, L∗

1 =
(

τ
∂

∂t∗
+ 1

)
, f = mN0

ρ0

h = mN0Cpt

ρC1
, h′ = mN0Cpt

ρC′
1

Here R1, S1, Pr , P ′
r , M1, M ′

1, M3, M5, x1, h and h′
1 de-

note, respectively the modified Rayleigh number, salin
Rayleigh number, Prandtl number, Prandtl number a
ogous to solute, ratio of magnetic to gravitational for
[buoyancy magnetization], effect on magnetization due
salinity, non-buoyancy magnetization, ratio of the salin
effect on magnetic field to pyromagnetic coefficient,
mensionless wave number, dust particle parameter and
particles parameter analogous to solute. The non-buoy
magnetization parameterM3 measures the departure of li
earity in the magnetic equation of state and values from
(M0 = χH0) to higher values are possible for the usual eq
tions of state.

4. Exact solution for free boundaries

Here we consider the case where both boundaries are
as well as perfect conductors of heat. The case of two
boundaries is of little physical interest, but it is mathem
ically important because one can derive an exact solu
whose properties guide our analysis. Here we conside
case of an infinite magnetic susceptibilityχ and we neglec
the deformability of the horizontal surfaces. Thus the ex
solution of the system (26)–(30) subject to the boundary c
ditions

W ∗ = D2W ∗ = T ∗ = C∗ = DΦ∗
1 = DΦ∗

2 = 0

at z = ±1

2
(31)

is written in the form

W ∗ = A1 eσ t∗ cosπz∗, T ∗ = B1 eσ t∗ cosπz∗

C∗ = F1 eσ t∗ cosπz∗, DΦ∗
1 = C1 eσ t∗ cosπz∗

Φ∗
1 = C1

π
eσ t∗ sinπz∗, DΦ∗

2 = E1 eσ t∗ cosπz∗

Φ∗
2 =

(
E1

)
eσ t∗ sinπz∗ (32)
π

t

e

whereA1, B1, C1, E1, F1 are constants andσ is the growth
rate which is, in general, a complex constant.

Substituting Eqs. (32) in Eqs. (26)–(30) and dropping
terisks for convenience, we get following equations
[{(

σ + (
π2 + a2))(1+ τσ ) + f σ

}(
π2 + a2)]A1

− [
aR1/2(1+ τσ )(1+ M1 − M4)

]
B1

+ [
aR1/2(M1 − M4)(1+ τσ )

]
C1

+ [
aS1/2(1+ τσ )(1− M ′

1 + M ′
4)

]
F1

+ [
aS1/2(M ′

1 − M ′
4)(1+ τσ )

]
E1 = 0 (33)[

aR1/2{h + (1− M2)(1+ τσ )
}]

A1

− [{(
π2 + a2) + Pr(1+ h)σ

}
(1+ τσ )

]
B1

+ [
PrM2σ(1+ τσ )

]
C1 = 0 (34)[

aS1/2{h′ + (1− M ′
2)(1+ τσ )

}]
A1

− [{(
π2 + a2) + Ps(1+ h′)σ

}
(1+ τσ )

]
F1

+ [
PsM

′
2σ(1+ τσ )

]
E1 = 0 (35)

−π2B1 + (
π2 + a2M3

)
C1 = 0 (36)

−π2F1 + (
π2 + a2M3

)
E1 = 0 (37)

For existence of non-trivial solutions of the above eq
tions, the determinant of the coefficients ofA1, B1, C1, E1,
F1 in Eqs. (33)–(37) must vanish. This determinant on s
plification yields

T4σ
4
1 − iT3σ

3
1 − T2σ

2
1 + iT1σ1 + T0 = 0 (38)

Here

T4 = τ1bL2L3 (39)

T3 = b
[
(τ1b + 1+ f )L2L3 + τ1bL0(L2 + L3)

]
(40)

T2 = [
τ1b

3L2
0 + b2L0(τ1b + 1+ f )(L2 + L3)

+ b2L2L3 − τ1x1R1(1− M2)L3L4

+ τ1x1S1(1− M ′
2)L2L5

]
(41)

T1 = [
b3L0

{
L0[τ1b + 1+ f ] + (L2 + L3)

}
− x1R1L4

[
τ1(1− M2)bL0 + {

h + (1− M2)
}
L3

]
+ x1S1L5

[
τ1(1− M ′

2)bL0 + {
h′ + (1− M ′

2)
}
L2

]]
(42)

T0 = bL0
[
b3L0 − x1R1

{
h + (1− M2)

}
L4

+ x1S1
{
h′ + (1− M ′

2)
}
L5

]
(43)

where

R1 = R/π4, S1 = S/π4, x1 = a2/π2

iσ1 = σ/π2, τ1 = τπ2, b = (1+ x1)

L0 = 1+ x1M3, L2 = Pr

[{
(1− M2) + x1M3

} + L0h
]

L3 = Ps

[{
(1− M ′

2) + x1M3
} + L0h

′]
L4 = {

1+ x1M3(1+ M1 − M4)
}

and

L5 = {
1+ x1M3(1− M ′

1 + M ′
4)

}
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5. The case of stationary convection

When the instability sets in as stationary convection in
caseM2 ∼= 0 andM ′

2
∼= 0, the marginal state will be chara

terized byσ1 = 0 (Chandrasekhar [13], Finlayson [14]), th
the Rayleigh number is given by

R1 = (1+ x1)
3(1+ x1M3)

x1h1{(1+ x1M3) + x1M3M1(1− M5)}
+ S1h

′
1{(1+ x1M3) + x1M3M

′
1(1/M5 − 1)}

h1{(1+ x1M3) + x1M3M1(1− M5)} (44)

which expresses the modified Rayleigh numberR1 as a func-
tion of the dimensionless parametersx1, M3, M5, h1, h′

1
and S1. Here we puth1 = (1 + h) and h′

1 = (1 + h′). In
the absence of dust particles, the values ofh1 andh′

1 is one.
A suggestion from Finlayson [14] has also been taken

a variation of these parametric values. In the present an
sis, the range of values pertaining to ferric oxide, keros
and other organic carriers are chosen. With the same f
oxide, the different carriers like alcohol, hydrocarbon, es
halocarbon, silicon could be chosen. Depending on this
parametric values of ferrofluid are found to vary within the
limits. The value of pyromagnetic coefficientK2 reported
by Rosensweig and Kaiser [51] isK2 = 0.03 gauss·◦C−1

(= 30 A·M·◦C−1) for magnetite in kerosene. The magne
forces can be increased by increasingK2, either by using
higher concentration or by suspending a solid with a hig
value ofK2. In very thin layers (less than 1 mm for the fl
ids) only the magnetic forces contribute to convection (F
layson [14]). For such fluids, the typical values ofM2 are
10−6 and so is assumed to have a negligible value and h
it is taken to be zero.M3 is varied from 1 to 25. The salinit
Rayleigh numberS1 is varied from 0 to+500. The buoy-
ancy magnetization parameterM1 is assumed to be 1000
M ′

1 is allowed to vary from 0.1 to 0.5 taking values less th
the non-buoyancy magnetization parameterM3. M5 is var-
ied between 0.1 and 0.5.

To investigate the effects of non-buoyancy magnetizat
dust particles and stable solute gradient, we examine
behavior of dR1/dM3, dR1/dh1 and dR1/dS1 analytically.
Eq. (44) yields

dR1

dM3
= −{

(1− M5)
[
(1+ x1)

3M1

+ x1S1h
′
1{M1 − M ′

1/M5}
]}

× {
h1

{
(1+ x1M3) + x1M3M1(1− M5)

}2}−1 (45)

dR1

dh1
= −{

(1+ x1)
3(1+ x1M3)

+ x1S1h
′
1

{
(1+ x1M3) + x1M3M

′
1(1/M5 − 1)

}}

× {
x1h

2
1

{
(1+ x1M3) + x1M3M1(1− M5)

}}−1 (46)

dR1 = h′
1[(1+ x1M3) + x1M3M

′
1{1/M5 − 1}]

(47)

dS1 h1{(1+ x1M3) + x1M3M1(1− M5)}
The destabilizing effect of the non-buoyancy magnet
tion and dust particles is evident from the fact that dR1/dM3
and dR1/dh1 are always negative, i.e. the Rayleigh num
decreases with an increase in non-buoyancy magnetiz
and dust particles parameters. Eq. (47) yields that dR1/dS1
is always positive, thus indicating the stabilizing effect
solute gradient. For sufficiently large values ofM1 (Fin-
layson [14]), we obtain the results for the magnetic me
anism

Rm = R1M1

= (1+ x1)
3(1+ x1M3)

x2
1h1M3(1− M5)

+ S1h
′
1{1+ x1M3 + x1M

′
1M3(1/M5 − 1)}

x1h1M3(1− M5)
(48)

whereRm is the magnetic thermal Rayleigh number.
As a function ofx1, Rm given by Eq. (48) attains its min

imum when

2M3x
4
1 + (1+ 3M3)x

3
1 − (M3 + S1h

′
1 + 3)x1 − 2= 0 (49)

The values of critical wave number for the onset of
stability are determined numerically using Newton-Raph
method by the condition dRm/dx1 = 0. With x1 determined
as a solution of Eq. (49), Eq. (48) will give the required cr
cal magnetic thermal Rayleigh numberNc. The critical mag-
netic thermal Rayleigh number (Nc), depends on the non
buoyancy magnetization parameterM3, ratio of the salinity
effect on magnetic field to pyromagnetic coefficientM5, dust
particles parameterh1, dust particles parameter analogous
soluteh′

1 and stable solute gradientS1. Values ofNc deter-
mined for various values ofM3, h1, h′

1 andS1 are given in
Table 1 and the results are further illustrated in Figs. 2
and 4.

Figs. 2(a) and 2(b) represent the plots of critical wa
numberxc and critical magnetic thermal Rayleigh numb
Nc versus non-buoyancy magnetization parameterM3 for
various values ofh1. Fig. 2(a) indicates the destabilizin
nature of cell sizexc asM3 increases. Fig. 2(b) illustrate
that as non-buoyancy magnetization parameter increase
critical magnetic Rayleigh numberNc decreases. This is be
cause variation in magnetization releases extra energy w
adds up to thermal energy to destabilize the system. Th
fore the system will always be in convective mode ev
for the smallest thermal and magnetic gradients. There
lower values ofNc are needed for onset of convection w
an increase inM3, hence justifying the destabilizing effec
of non-buoyancy magnetization. Also, it is observed fr
Fig. 2(b) that as value ofM3 is less than 6, the critical mag
netic Rayleigh numberNc shows a drastic decrease lead
to a value of 220 and has less influence in the value ofNc as
magnetizationM3 is increased further.

Figs. 3(a) and 3(b) give the variation of critical wa
numberxc and critical magnetic thermal Rayleigh numb
Nc versus dust particles parameters (h1, h

′
1) for different val-

ues ofS1. These figures show the stabilizing nature of c
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Table 1
Critical magnetic thermal Rayleigh numbers and wave numbers of the unstable modes at marginal stability for the onset of stationary convectionrious
values of solute gradient, non-buoyancy magnetization and dust particles parameters

S1 M3 M5 = 0.1, M ′
1 = 0.1

h1 = 1, h′
1 = 1 h1 = 3, h′

1 = 3 h1 = 5, h′
1 = 5 h1 = 7, h′

1 = 7

xc Nc xc Nc xc Nc xc Nc

0 1 1.00 17.78 1.00 5.93 1.00 3.56 1.00 2.54
5 0.69 10.03 0.69 3.34 0.69 2.01 0.69 1.43

10 0.61 8.85 0.61 2.95 0.61 1.77 0.61 1.26
15 0.58 8.42 0.58 2.81 0.58 1.68 0.58 1.20
20 0.56 8.20 0.56 2.73 0.56 1.64 0.56 1.17

100 1 3.18 279.60 4.75 252.45 5.72 244.39 6.45 240.09
5 1.79 238.51 2.68 226.80 3.24 223.52 3.67 221.81

10 1.39 230.80 2.08 221.91 2.51 219.52 2.85 218.30
15 1.21 227.69 1.79 219.91 2.16 217.89 2.45 216.87
20 1.09 225.94 1.61 218.78 1.94 216.96 2.20 216.05

200 1 4.10 521.14 6.11 483.95 7.33 472.45 8.27 466.23
5 2.31 460.42 3.47 445.11 4.18 440.60 4.72 438.20

10 1.79 448.87 2.69 437.66 3.25 434.47 3.68 432.80
15 1.54 444.18 2.32 434.62 2.80 431.97 3.17 430.60
20 1.39 441.52 2.08 432.89 2.52 430.55 2.85 429.35

300 1 4.75 757.34 7.06 711.91 8.47 697.60 9.55 689.80
5 2.68 680.41 4.02 662.15 4.84 656.63 5.46 653.67

10 2.08 665.72 3.13 652.58 3.77 648.74 4.26 646.71
15 1.79 659.73 2.69 648.68 3.25 645.53 3.68 643.87
20 1.61 656.34 2.42 646.47 2.93 643.70 3.31 642.27

400 1 5.27 990.61 7.83 937.93 9.38 921.15 10.56 911.95
5 2.99 899.36 4.46 878.50 5.37 872.09 6.06 868.63

10 2.31 881.88 3.48 867.06 4.19 862.64 4.73 860.29
15 1.99 874.76 3.00 862.40 3.62 858.79 4.09 856.89
20 1.79 870.72 2.69 859.75 3.25 856.61 3.68 854.96
of
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sizexc, whereas destabilizing nature ofNc as bothh1, h′
1 in-

crease. In the absence of solute gradient, constant valuexc
is observed ash1 increases, whereas in the presence of so
gradient, the value ofxc increases ash1 increases, show
ing the stabilizing nature of cell sizexc. Therefore, due to
the presence of stable solute gradient, there is a compe
of stabilizing role of stable solute gradient and destabiliz
role of dust particles. Here the critical stability parame
Nc is reduced in the presence of dust particles becaus
heat capacity of clean fluid is supplemented by that of
dust particles. This new type of phenomenon is obse
here.

Figs. 4(a) and 4(b) give the variation of critical wa
numberxc versus solute gradientS1 and consequent criti
cal magnetic Rayleigh numberNc versus solute gradientS1
for different values ofh1 and h′

1. These figures show th
destabilizing nature of cell sizexc and correspondingNc
as S1 increases. Thus, these graphs exhibit a destabili
trend.

6. The case of oscillatory modes

Here we examine the possibility of oscillatory modes
any, on stability problem due to the presence of dust p
cles, stable solute parameter and magnetization param
Equating the imaginary parts of Eq. (38), we obtain
r.

σ1
[
b3L0

{
L0{τ1b + 1+ f } + (L2 + L3)

}
− x1R1L4

[
τ1(1− M2)bL0 + {

h + (1− M2)
}
L3

]
+ x1S1L5

[
τ1(1− M ′

2)bL0 + {
h′ + (1− M ′

2)
}
L2

]
− σ 2

1b
[
L2L3(τ1b + 1+ f ) + τ1bL0(L2 + L3)

]] = 0

(50)

It is evident from Eq. (50) thatσ1 may be either zero
or non-zero, meaning that the modes may be either
oscillatory or oscillatory. In the absence of dust particles
stable solute gradient, we obtain the above result as

σ1
[
Pr

{
(1− M2) + x1M3

} + (1+ x1M3)
] = 0 (51)

Here the quantity inside the brackets is positive definite
cause the typical values ofM2 are+10−6 (Finlayson [14]).
Hence

σ1 = 0 (52)

which means that oscillatory modes are not allowed and
principle of exchange of stabilities is satisfied, in the
sence of dust particles and stable solute gradient. Thus
Eq. (50), we conclude that the oscillatory modes are in
duced due to the presence of the dust particles and s
solute gradient, which were non-existent in their absenc
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Fig. 2. (a) Variation ofxc versusM3. (b) Marginal instability curve for
variation ofNc versusM3 for S1 = 100,M5 = 0.1, M ′

1 = 0.1; h1 = 1 for
curve 1,h1 = 3 for curve 2,h1 = 5 for curve 3 andh1 = 7 for curve 4.

7. The case of overstability

The present section is devoted to find the possibility
the observed instability may really be overstability. Since
wish to determine the Rayleigh number for the onset of
stability through state of pure oscillations, is sufficient to fi
conditions for which Eq. (38) will admit of solutions withσ1
real.

Equating real and imaginary parts of Eq. (38) and eli
natingR1 between them, we obtain

A2c
2
1 + A1c1 + A0 = 0 (53)

wherec1 = σ 2
1

A2 = τ1bL2
3

[{
τ1(1− M2)(L0 + L2)

}
b

+ L2
{
f (1− M2) − h

}]
(54)

A1 = {[
τ2

1L2
0(1− M2)(L0 + L2)

]
b4

+ [
τ1L

2
0L2

{
f (1− M2) − h

} + τ1hL0L
2
3

]
b3

+ L2
3

{
L0(1+ f ) + L2

}[
h + (1− M2)

]
b2

+ [
L0L5τ

2
1x1(1− M2)(1− M ′

2)S1(L2 − L3)
]
b

+ [
τ1x1S1L2L3L5

{
h(1− M ′

2) − h′(1− M2)
}]}

(55)

A0 = bL0
{(

L2
0hτ1

)
b4

+ L0
[{

h + (1− M2)
}{

(1+ f )L0 + L2
}]

b3

+ [
τ1x1L0L5S1

{
h(1− M ′

2) − h′(1− M2)
}]

b

(a)

(b)

Fig. 3. (a) Variation ofxc versush1. (b) Marginal instability curve for varia
tion of Nc versush1 for M3 = 1, M5 = 0.1, M ′

1 = 0.1; S1 = 0 for curve 1,
S1 = 100 for curve 2,S1 = 200 for curve 3,S1 = 300 for curve 4 and
S1 = 400 for curve 5.

+ [
x1L5S1

{
h + (1− M2)

}{
h′ + (1− M ′

2)
}

× (L2 − L3)
]}

(56)

Sinceσ1 is real for overstability, both values ofc1 (= σ 2
1 )

are positive. Eq. (53) is quadratic inc1 and does not involve
any of its roots to be positive if

f >
h

1− M2
,

h

1− M2
>

h′

1− M ′
2

and L2 > L3 (57)

i.e. if

f >
h′

1− M ′
2

and L2 > L3 (58)

i.e. if

(ρ0CV,H − µ0K3H0)(1− M ′
2) > ρ0Cpt,

Pr > Ps, Pr > Ps + PrM2 and hPr > h′Ps (59)

which implies that

(ρ0CV,H − µ0K3H0)(1− M ′
2) > ρ0Cpt,

Pr > Ps + PrM2, hPr > h′Ps (60)

and the other inequalityPr > Ps being automatically satis
fied in view of (60).
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Fig. 4. (a) Variation ofxc versusS1. (b) Marginal instability curve for vari-
ation ofNc versusS1 for M3 = 1,M5 = 0.1,M ′

1 = 0.1; h1 = 1 for curve 1,
h1 = 3 for curve 2,h1 = 5 for curve 3 andh1 = 7 for curve 4.

Thus, for(ρ0CV,H − µ0K3H0)(1 − M ′
2) > ρ0Cpt, Pr >

Ps + PrM2, hPr > h′Ps , overstability cannot occur and th
principle of the exchange of stabilities is valid. Hence
above conditions are the sufficient conditions for the n
existence of overstability, the violation of which does n
necessarily imply the occurrence of overstability. In the
sence of magnetic parameters (in non-magnetic fluid)
above conditions, as expected, reduce toCv > Cpt, i.e. the
specific heat of fluid at constant volume is greater than
specific heat of dust particles andK1 < K ′

1, i.e. the therma
conductivity is less than the solute conductivity, which is
good agreement with the results obtained earlier [43–46
the presence of magnetic parameters but in the absen
dust particles the above conditions, as expected, reduce

Pr >
Ps

1− M2
i.e.

K ′
1 > K1

[
ρC′

1

ρC1{1− µ0T0K
2
2/((1+ χ)ρC1)}

]
,

which is also in good agreement with the results obtai
earlier by Sunil et al. [38].

8. Discussion of results and conclusions

In this paper, we studied the effects of dust particles o
ferrofluid heated and soluted from below in the presenc
f

uniform vertical magnetic field. We have investigated the
fects of non-buoyancy magnetization, stable solute grad
and dust particles on the onset of convection. The princ
conclusions from the analysis of this paper are as under

(i) For the case of stationary convection, the non-buoya
magnetization, dust particles always have a destab
ing effect, whereas stable solute gradient delays the
set of convection as is evident from Eq. (47).

(ii) The critical wave numbers and critical magnetic th
mal Rayleigh numbers for the onset of instability a
also determined numerically for sufficiently large v
ues of buoyancy magnetic parameterM1 and the results
are depicted graphically. The effects of governing
rameters on the stability of the system are discus
below.
• The destabilizing nature of cell size (xc) and cor-

respondingNc as non-buoyancy magnetizationM3
increases can be observed from Figs. 2(a) and
and also from Table 1 for other different values.

• Table 1 and Figs. 3(a) and 3(b) lead to the conc
sion that cell size always has a stabilizing natu
whereas dust particles have always a destabiliz
nature. Therefore, lower the value ofNc earlier will
be onset of convection with an increase inh1. The
destabilizing effect of dust particles on non-magne
fluid is accounted by many authors [42–49] and
found to be valid for a ferrofluid also.

• We have also looked into the effect of stable sol
gradientS1. Figs. 4(a) and 4(b) demonstrate the
fect of S1 on xc andNc. Fig. 4(a) shows the desta
bilizing nature of cell sizexc. It is also observed
from Fig. 4(b) that a stable solute gradient dela
the onset of convection. This is in contrast to t
case of “soluted from above” where a unstable so
gradient have the destabilizing effect on the sys
(Vaidyanathan et al. [28,29]).

• We also observed that the critical stability parame
Nc is reduced in the presence of dust particles
cause the heat capacity of clean fluid is suppleme
by that of the dust particles.

(iii) The principle of exchange of stabilities is found to ho
true for the ferrofluid heated from below in the absen
of dust particles and stable solute gradient. The osc
tory modes are introduced due to the presence of
dust particles and stable solute gradient, which w
non-existent in their absence.

(iv) The conditions(ρ0CV,H −µ0K3H0)(1−M2) > ρ0Cpt,
Pr > Ps +PrM2, hPr > h′Ps are sufficient for the non
existence of overstability. In the absence of magn
parameters the above conditions, as expected, red
to Cv > Cpt, i.e. the specific heat of fluid at consta
volume is greater than the specific heat of dust pa
cles andK1 < K ′

1, i.e. the thermal conductivity is les
than the solute conductivity, which is in good agre
ment with the previous published work.
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